

ERRATA

MATHEMATICS FOR AUSTRALIA 11

Specialist Mathematics

First edition - 2016 second reprint

The following errata were made on 7/Dec/2016

page 249 ANSWERS EXERCISE 2C, question 2 should read:

2 Hint: Use radius-tangent and chords of a circle theorems.

page 250 ANSWERS EXERCISE 2H, questions 8 and 10 should read:

8 Hint: Use chords of a circle theorem.

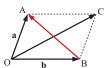
9 Hint: Use equal corresponding angles

10 Hint: Show that XY subtends equal angles at B and C.

page 250 ANSWERS EXERCISE 2I, question 9 should read:

9 Hint: Show \triangle s AXC and DXB are similar.

page 250 ANSWERS REVIEW SET 2B, remove hint for question 8.


page 253 ANSWERS EXERCISE 3G.2, question 4 b should find the ratio of how the line segment is divided, not the vector:

4 a
$$\overrightarrow{PQ} = -\frac{2}{3}\overrightarrow{QR}$$
 b P divides [QR] in the ratio 2:1.

page 254 ANSWERS EXERCISE 3J, question 12 b hint should be:

a Hint: Square both sides.

b Consider the parallelogram. Find \overrightarrow{AB} and \overrightarrow{OC} , etc.

page 254 ANSWERS EXERCISE 3K, question 3 should read:

3 i + 4j. The component of **a** in the direction of **b** is equal to **b**.

page 264 ANSWERS REVIEW SET 5A, question 24 should read:

24 a
$$A^{-1} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 b $B^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$

b
$$\mathbf{B}^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

c
$$\mathbf{B}^{-1}\mathbf{A}^{-1} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

ERRATA

MATHEMATICS FOR AUSTRALIA 11

Specialist Mathematics

First edition - 2016 first reprint

The following errata were made on 10/Jun/2016

page 101 CHAPTER 3 SECTION L, USEFUL TOOLS IN VECTOR PROOF should read:

USEFUL TOOLS IN VECTOR PROOF

• If $\mathbf{a} = k\mathbf{b}$ where k is a scalar then \mathbf{a} and \mathbf{b} are parallel, and $|\mathbf{a}| = |k| |\mathbf{b}|$.

- If M is the midpoint of [AB] then $\overrightarrow{OM} = \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$.
- To prove **a** is perpendicular to **b**, show that $\mathbf{a} \bullet \mathbf{b} = 0$.
- Properties of scalar product:

1 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ for any two vectors \mathbf{a} and \mathbf{b} .

2 $\mathbf{a} \bullet \mathbf{a} = |\mathbf{a}|^2$ for any vector \mathbf{a} .

3 $a \bullet (b + c) = a \bullet b + a \bullet c$ for any vectors a, b, and c.

4 $(a + b) \bullet (c + d) = a \bullet c + a \bullet d + b \bullet c + b \bullet d$.

page 156 CHAPTER 5 SECTION D, should include alternate notation for determinants:

For the matrix $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$:

- ullet the value ad-bc is called the **determinant** of matrix ${f A}$, denoted $\det {f A}$ or $|{f A}|$
- if det $\mathbf{A} \neq 0$, then \mathbf{A} is invertible or non-singular, and $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
- if $\det \mathbf{A} = 0$, then **A** is **singular**, and \mathbf{A}^{-1} does not exist.

page 204 CHAPTER 6 EXERCISE 6G, question 1 a should read:

- 1 Use the principle of mathematical induction to prove the following propositions:
 - **a** $3^n \ge 1 + 2n$ for all integers $n \ge 0$
 - **b** $n! \geqslant 2^n$ for all $n \in \mathbb{Z}$, $n \geqslant 4$
 - $e^{-8^n} \ge n^3$ for all $n \in \mathbb{Z}^+$

page 249 ANSWERS REVIEW SET 1B, question 1 b should read:

1 a 56 **b** n(n-1), $n \ge 2$ **c** 36

page 249 ANSWERS EXERCISE 2C, question 3 should read:

3 Hint: Use angle between a tangent and a radius, then use congruence.

page 250 ANSWERS EXERCISE 2H, questions 8 and 10 should read:

8 Hint: Join [OX] and [OY].

9 Hint: Use equal corresponding angles.

10 Hint: Show that $\widehat{YBX} = \widehat{XCY}$.

page 250 REVIEW SET 2B, question 8 should read:

8 Hint: Show $\triangle OQR$ is isosceles. Let $\widehat{PQR} = \alpha$.

page 253 ANSWERS EXERCISE 3H, question 6 should read:

6 ≈ 0.599 N, on a bearing of $\approx 207^{\circ}$ from A.

page 253 ANSWERS EXERCISE 3J, question 4 should mention:

4 Note: The negative of these vectors are also valid answers.

$$\mathbf{a} \quad \begin{pmatrix} 8 \\ 6 \end{pmatrix} \qquad \mathbf{b} \quad \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \mathbf{c} \quad \begin{pmatrix} -\frac{4}{\sqrt{10}} \\ \frac{12}{\sqrt{10}} \end{pmatrix} \qquad \mathbf{d} \quad \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

page 263 ANSWERS EXERCISE 5L, question 5 b ii should read:

5 a i
$$\begin{bmatrix} 1 & 0 \\ 0 & \frac{2}{3} \end{bmatrix}$$
 ii A dilation parallel to the y -axis with scale factor $\frac{2}{3}$.

b I
$$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$
 II A reflection in the line $y = \left(\tan \frac{5\pi}{6}\right) x$.

page 264 ANSWERS REVIEW SET 5A, question 21 a should read:

21 a a reflection in the line $y = \left(\tan \frac{\pi}{12}\right) x$

page 265 ANSWERS REVIEW SET 5B, question 23 c should read:

23 b The image is a parallelogram. **c**
$$A^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$
 The sense and area remain the same.

page 266 ANSWERS EXERCISE 7B, question 1 f should read:

f 0.4117647058823529

Note: Due to the limited number of digits that your calculator may display, $\frac{7}{17}$ may appear to neither terminate nor recur.

page 268 **ANSWERS EXERCISE 7I.1**, question **8 b** should read:

8 b
$$\Re(w) = 0$$
 p.v. $a \neq 1$ If $a = 1$, $\Re(w)$ is undefined.