Mathematics ⁽ cialist Mathe

ERRATA

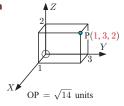
MATHEMATICS FOR AUSTRALIA 12

Specialist Mathematics

First edition - 2017 initial print

The following errata were made on 13/Nov/2017

page 317 ANSWERS EXERCISE 5E Question 3, should read:


$$\overrightarrow{QS} = 2\overrightarrow{PR}, \quad PR : QS = 1 : 2$$

page 318 ANSWERS EXERCISE 51.1 Question 8 d, should not be a vector:

c $2(\mathbf{b} \times \mathbf{a})$

page 318 ANSWERS REVIEW SET 5A Question 1 a, point coordinates should read:

The following errata were made on 31/Aug/2017

page 201 EXERCISE 7B Questions 9 a and f, should read:

a
$$\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^2}} dx$$
 b $\int_{0}^{\frac{1}{2}} -\frac{2}{\sqrt{1-x^2}} dx$

b
$$\int_0^{\frac{1}{2}} -\frac{2}{\sqrt{1-x^2}} dx$$

$$\int_{1}^{\sqrt{3}} \frac{3}{1+x^2} \, dx$$

c
$$\int_{1}^{\sqrt{3}} \frac{3}{1+x^2} dx$$
 d $\int_{-\sqrt{3}}^{0} \frac{5}{\sqrt{4-x^2}} dx$

$$\int_{-3}^{\sqrt{3}} \frac{6}{9+x^2} dx$$

e
$$\int_{-3}^{\sqrt{3}} \frac{6}{9+x^2} dx$$
 f $\int_{-1}^{0} -\frac{1}{\sqrt{2-x^2}} dx$

The following errata were made on 26/Jul/2017

page 302 ANSWERS EXERCISE 1B Question 8 d, hint should read:

8 d Hint: Show that
$$(A_{k+1})^2 - 3(B_{k+1})^2$$

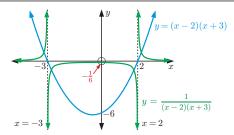
$$= (A_k)^2 - 3(B_k)^2$$
 for any positive integer k .

page 302 **ANSWERS EXERCISE 2C** Question **2 b**, should have only one solution:

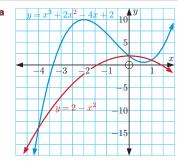
2 a
$$a=2$$
, $b=-2$ or $a=-2$, $b=2$ **b** $a=2$, $b=-1$

page 303 ANSWERS EXERCISE 2G Questions 4 and 6, should read:

4
$$a = -13$$
, $b = 34$, other roots are $3 - i$, $-2 \pm \sqrt{3}$


5
$$a=3$$
, $P(z)=(z+3)(z+i\sqrt{3})(z-i\sqrt{3})$

6
$$a=-4$$
, $b=15$, other roots are $2-i$, $\pm i\sqrt{3}$


- **a** If a horizontal line cuts f more than once, a vertical line will cut its reflection in y = x more than once, and so the reflection of f in y = x will not be a function.
 - **b** I is the only one.
 - **c** II Domain = $\{x \mid x \geqslant 1\}$ or $\{x \mid x \leqslant 1\}$
 - $\mathbf{iii} \quad \mathsf{Domain} = \{x \mid x \geqslant 1\} \quad \mathsf{or} \quad \{x \mid x \leqslant -2\}$

page 311 ANSWERS REVIEW SET 3A Question 8, should have correct y-axis intercept:

page 325 **ANSWERS EXERCISE 7E** Question **2 a**, should have correct graph label:

page 327 ANSWERS EXERCISE 8B Question 14, is not an approximation:

14 increasing at 0.128 radians per second

page 327 ANSWERS EXERCISE 8E Questions 1 b, h, and 3 a, should read:

1 a
$$y = \sqrt[3]{\frac{3}{2}x^2 + c}$$
 b $y = \ln(x^2 + c)$ **c** $y = Ae^{\frac{3}{2}x^2}$

b
$$y = \ln(x^2 + c)$$

c
$$y = Ae^{\frac{3}{2}x^2}$$

$$\mathbf{d} \ \ y = \left(\frac{x^2}{2} + c\right)^2$$

f
$$y = \left(-\frac{1}{4}x^2 + c\right)^2 - 1$$
 g $y = Ax$

h
$$y = -\ln(c - x^3)$$

$$y = A(x-1) - 2$$

$$\mathbf{n} \quad y = -\ln(c - x^{3})$$

2 a
$$y = Ae^x$$
 b $y = \pm \sqrt{2x + c}$ **c** $y = Ae^t + 4$

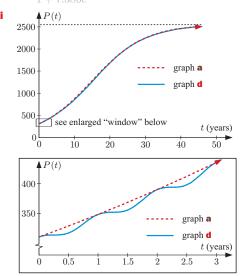
d
$$P = \left(\frac{3}{2}t + c\right)^2$$
 e $Q = Ae^t - \frac{3}{2}$ **f** $t = Q^2 + 3Q + c$

$$+ c$$
 $y = Ae^{2} + 4$

b
$$u = Ae^{2x} + 2$$

3 a
$$y = Ae^{\arctan x}$$
 b $y = Ae^{2x} + 2$ **c** $y = \sqrt[3]{3\ln(x^2 + 5) + c}$ **d** $y = 1 + Ae^{-\arcsin(\frac{x}{2})}$

d
$$y = 1 \perp A_{\theta} - \arcsin(\frac{x}{2})$$


page 328 ANSWERS EXERCISE 8E Question 4 e, should read:

4 e
$$y = \ln \left[\sqrt[4]{2x^2 + 4x + 1} \left(e^2 + 3 \right) - 3 \right]$$

page 329 ANSWERS EXERCISE 8J Question 4 b, should read:

- **b** When x = 0, $v^2 = k^2 A^2$
 - \therefore maximum speed = k |A|

12 d $P = \frac{2550}{1 + 7.380 e^{-0.133} t^{-0.0212} \cos 2\pi}$

The following erratum was made on 20/Mar/2017

page 260 EXERCISE 8I Question 3, should use correct units:

- 3 An object with displacement x cm moves with acceleration $a = 12\sqrt{x}$ cm s⁻². The object is initially at the origin O, moving with velocity 3 cm s^{-1} .
 - **a** Show that $v^2 = 16x^{\frac{3}{2}} + 9$.
 - **b** Find the location of the object when its velocity is 5 cm s^{-1} .
 - Find the speed of the object when it is 9 cm to the right of O.

The following erratum was made on 27/Feb/2017

page 66 EXERCISE 3C Question 2, should read:

2 Prove that $y = \frac{k}{x}$ is a self-inverse function for all $k \in \mathbb{R}$, $k \neq 0$.

The following errata were made on 03/Feb/2017

page 15 EXERCISE 1B Question 13, replace entirely with:

13 A sequence is defined by $t_n = 3n^2$ for $n \in \mathbb{Z}^+$. Use the principle of mathematical induction to show that $\sum_{i=1}^n t_i = \frac{n(n+1)(2n+1)}{2}$.

page 302 ANSWERS EXERCISE 1B Question 10 b, replace hint with:

- **10 a** Hint: $\cos A \sin B = \frac{1}{2} [\sin(A+B) \sin(A-B)]$
 - **b** Hint: Use the double angle formulae.
 - d Hint: See hint for a.