

ERRATA

MATHEMATICS FOR AUSTRALIA 12

Mathematical Methods

First edition - 2017 first reprint

The following errata were made on 25/Jul/2017

page 94 REVIEW SET 3A Question 15 b, should read:

15 b Show that if $\theta = \widehat{APM} = \widehat{BPM}$, then the length of cable is given by $L(\theta) = 3 + \frac{2 - \cos \theta}{\sin \theta} \text{ km}.$

page 312 **ANSWERS EXERCISE 3F** Question **6 e**, should read:

6 e Hint: You should find $\frac{dW}{dt} = -\frac{1}{50} \ln 2 \times 20e^{-\frac{t}{50} \ln 2}$

page 312 ANSWERS EXERCISE 3G Question 9 d, should read:

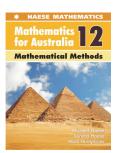
9 **c** $\theta = \frac{\pi}{6}$ **d** $\frac{\pi}{6}$ $\frac{\frac{d}{d}}{\theta}$

page 313 ANSWERS REVIEW SET 3A Question 6 b, should read:

f(x) is increasing for all x > 0 and is concave downwards for all x > 0.

The following erratum was made on 3/Jul/2017

page 26 REVIEW SET 1B Question 11, should read:

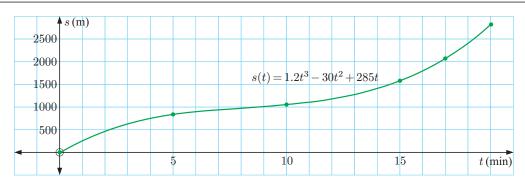

11 The temperature of a mug of water t minutes after it has been poured from a kettle is given by $T = 60e^{-0.1t} + 20$ °C. Show that it will take $10 \ln 3$ minutes for the temperature of the water to fall to 40°C.

The following errata were made on 13/Jun/2017

page 78 Chapter 3 EXAMPLE 11 Solution, second to last line should read:

f'(x) has a local maximum when x=-4 and a local minimum when $x\approx 2\frac{1}{2}$.

ERRATA


MATHEMATICS FOR AUSTRALIA 12

Mathematical Methods

First edition - 2016 initial print

The following errata were made on 27/Feb/2017

page 60 Chapter 3 Opening problem Graph should be:

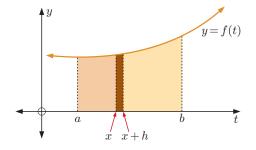
page 301 ANSWERS REVIEW SET 1A Question 2 c, should read:

2 a 3 **b** -2 **c** $\frac{5}{2}$ **3 a** $\ln 7$ **b** $\frac{1}{6}$ **c** $\frac{7}{2}$

The following errata were made on 30/Jan/2017

page 69 Section 3D Explanation should read:

When a curve, or part of a curve, has shape:


we say that the curve is concave downwards

we say that the curve is concave upwards.

page 108 Section 4C Explanation should keep naming consistent:

Consider the narrow strip between t = x and t = x + h. The area of this strip is A(x+h) - A(x), but we also know it must lie between a lower and upper rectangle on the interval $x \le t \le x + h$ of width h.

If f(t) is increasing on this interval then

page 312 ANSWERS EXERCISE 3G Question 9 e ii, should read:

9 e ii Walk from P to R.

page 326 ANSWERS EXERCISE 8B.1 Question 4 b, should read:

4 a $a = \frac{3}{16}$ **b** $\frac{1}{8}$

page 327 ANSWERS EXERCISE 8B.2 Question 5 c, should read:

5 a If $k = \frac{1}{2}$, f(x) < 0 **b** $k = \frac{1}{3}$ **c** $\frac{11}{25}$

The following errata were made on 9/Jan/2017

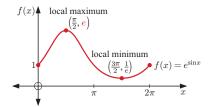
page 67 **EXERCISE 3B** Question **8**, should read:

8 Suppose $f(x) = \frac{x+k}{x^2+k}$ is never increasing. What range of values could the constant k have?

page 304 ANSWERS EXERCISE 2E Question 1 \mathbf{d} , should read:

1 d
$$\frac{dy}{dx} = \frac{2x+1}{2\sqrt{x}(1-2x)^2}$$

page 307 **ANSWERS EXERCISE 3B** Question **8**, should read:


8
$$-1 \le k \le 0$$

The following erratum was made on 6/Dec/2016

page 308 ANSWERS EXERCISE 3C Question 7 d, should have correct coordinate label for local maximum:

7 d $\left(\frac{\pi}{2}, e\right)$ is a local maximum,

$$\left(\frac{3\pi}{2}, \frac{1}{e}\right)$$
 is a local minimum

